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ABSTRACT

Aquaculture based farming of fish and aquatic products are sought after source for nutritious
food, capable of addressing world food security and hunger needs. Managing nutrient waste from
intensive aquaculture systems is a global challenge. Moreover, continual water supply in terms of
quantity and quality are key determinants for aquaculture productivity. Increase in global
population and need for enough food to meet nutrition demands has put pressure on food
production systems involving water and land. Sustainable water and waste management will be
key drivers to future food generation. Waste generated from aquafarming applications and
practices can be reutilized, recycled, refurbished by innovative approaches such as RAS, IMTA,
BFT, aquaponics, microalgae use, leading to circular aquaculture outputs of improved fish yields,
water quality improvement and waste valorization with value-added production.

KEYWORDS: Aquaculture, Waste Valorization, Biofloc, IMTA, RAS, Algae, Circular
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INTRODUCTION

Aquaculture is fast growing source of quality nutrition fulfilling protein requirements of
population world-over (Hua et al., 2019). Aquaculture based farming of fish and aquatic products
are sought after source for nutritious food, capable of addressing world food security and hunger
needs (FAO, 2018).World population is projected to rise exponentially from present 7.6 billion to
9.8 billion by 2050 with nearly 83 million births every year (UN, 2017) anticipating rise in food
demand at 50 % to tend future food requirements. Increasing global population need for enough
food to meet nutrition requirements is expected to put pressure on food production systems
involving water and land. Thus anticipating 30 % increment in water withdrawals compared to
present (Michel, 2023). Aquaculture services have become integral part of global food systems
contributing largely to world population through fed and extractive species production (Verdegem
et al., 2023). Water-food systems interconnections are central themes in biosecurity of aquatic
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system, food safety and nutrition (Ringler et al., 2022). Future growth and sustainable aquaculture
development will depend on large scale integration of circular goals with economic, environmental
and societal benefits.

1. Aquaculture waste-water and nutrient waste problem

Strained water supply and continual water stress in terms of quality, quantity is key determinants
in aquaculture productivity potential. Culture waste-water (WW) is after-product of finfish and
shellfish farming containing large amount of organic, nutrient waste, including nitrates, ammonia
(NH3), nitrites, phosphorous (P), solid suspension, minerals, chemical compounds (from
fertilization, antibiotic treatments), heavy metals, and pathogens (Leong et al., 2021).
Intensification of aquafarming has led to increased dependence on artificial feeds with high cost
associated to maintain water quality (Henriksson et al., 2021). Feed is a significant contributor of
antibiotic growth promoters to freshwater aquaculture, posing contamination risk to algae and
putative human hazard (Hu et al., 2010). Overaged diets, unutilized fish feed, fish metabolites and
farming waste, contribute waste nutrient accumulation in culture environment leading to
eutrophication and toxic blooms, hence require apposite addressal (Ojewole et al., 2024). Improper
feed disposal, fertilization of culture water and poorly stored feed are known to transfer resistance
mechanism in opportunistic trains (Milijasevic et al., 2024). Ammonium (NH4") and inorganic
phosphorous loads can favour proliferation of pathogenic strains causing disease incidences
(Olsen et al., 2017). Bacterial species Enterobacter, Streptococcus iniae, Escherichia coli,
Salmonella spp., Shigella spp. Aeromonas hydrophila, Staphylococcus aureus, Pseudomonas
putida and Enterococcus faecalis have been identified in infected fish species including tilapia,
channel catfish, yellow catfish, grass carp (Nhinh et al., 2021; Ogbonna and Inana, 2018; Hongsen
et al., 2024).

1.1 Circular economy in aquaculture

Circular economy paradigm focusses on resource reuse potential. Recycling and reutilisation of
waste-by-products are pillars for circular bio economy (Venkatesh, 2022). Circular aquaculture
explores circular economy goals of life cycle analysis (LCA) for environmental impact
assessment, allowing closed-loop integration of waste generation and repurposing, maximizing
resource use efficiency (Falcone et al., 2022). It aims at inventive technologies for aquaculture
waste and WW treatment, use of seaweeds and microalgae, waste valorization, as well as
deployment of state-of-art aquaculture systems (including aquaponics, biofloc technology BFT,
recirculatory aquaculture systems RAS, integrated multitrophic aquaculture IMTA), refer Figure
1.

1.2 Waste-water treatment and management

Aquafarming waste generated can be reutilized, recycled, repurposed supporting objectives of
circular economy (Dauda et al., 2019). Various innovative aquafarming technique shave capacity
to refurbish and reutilize culture waste and waste water, these include RAS, BFT, IMTA,
aquaponics besides use of microalgae and beneficial bacterial systems as probiotics integrated to
innovative approach (Ojewole et al., 2024).
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Figure 1: Circular bioeconomy goals and attainment of sustainable aquaculture
development. (TAN: total ammoniacal nitrogen)

1.2.1 RAS

Recirculatory aquaculture system (RAS) is intensive, innovative farming technology that recycle,
reutilizes water through mechanical and biological filtration, minimizing water exchange (Ahmed
and Turchini, 2021). As an indoor closed loop culture technique RAS operates for removal of
waste under controlled environment conditions. RAS system provides higher utilization rates of
feed minimizing unutilized or waste feed generation (FAO and EUROFISH, 2015). Recirculation
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of water in RAS helps in managing culture conditions of temperature, dissolved oxygen promising
sustainable aquaculture production with limited external interventions or pathogenic transmission
(EU, 2020). The technique is limited by technological constraints, cost and need of skilled labor.
Up to 50 percent production cost in traditional RAS is utilized in management of nutrient-rich
waste-by-products (Ende et al., 2024). Recently, integrated microalgal-RAS (MG-RAS) systems
have explored potential of MG-based remediation ‘phycoremediation’ of recirculating water. MG
have high nutrient assimilation potential for biomass generation; capable of carbon sequestration.
MG enable oxygenation of aquatic system circumventing aeration needs of culture environment.

A branch of RAS and BFT called bio-RAS is novel approach using recirculating water in multiple
compartments for waste utilization (Zimmermann et al., 2023). Compartmentalization allows
separate aeration, feed treatment for culture species and microorganisms circumventing
contamination problems of traditional RAS. Nguyen et al., (2021) reported better feed uptake
protein efficiency and growth of Nile tilapia (O. niloticus) in bio-RAS in comparison to traditional
clear water - RAS system. Bio-RAS is a green approach for sustaining high stocking densities,
minimizing water exchange and disease risk.

1.2.2 Biofloc system

Biofloc technology (BFT) is the system of use of microbial flocculation of MG, bacteria, yeast
and ascomycetes to utilize remnant feed and organic detritus for manufacture of microbial biomass
(De Schryver et al., 2008). Floc microorganisms source nutrients, water quality improvement and
probiotic properties in farming ecosystem. (Khanjani et al., 2022b).

Bioflocs are important source of vitamins, lipids, essential amino acids in protein, carbohydrates
and carotenoid substances enhancing performance parameters of farming species (Emerenciano et
al., 2023). According to Ekasari et al. (2014) floc size has impact of nutritional composition and
the nitrogen uptake potential of aquaculture species. Conversely, in their work Vinatea et al. (2018)
described impact of cultured species on biofloc composition, with improved protein, carbohydrate,
lipid content of Mugil fry biofloc compared to flocs for developing stages of Tinca. BF biomass
is valuable source of single cell proteins (SCP) with potential for fishmeal (FM) replacement in
aquafeeds (Dantas et al., 2016). Being highly priced protein source with excessive cost bearings
FM substitution with biofloc meal is sustainable alternative for nutrient rich diets to aquaculture
species. Table 1 describes nutritional benefits of biofloc to aquaculture species.

1.2.3 IMTA

Integrated multi-trophic aquaculture (IMTA) is sustainable aquaculture management approach
using by-products of one culture species to deliver feed, fertilization for co-culture of other species
(Rosa et al., 2020). IMTA integrates multi-trophic level consisting of fed aquaculture species
(largely finfish and shellfish); inorganic extractive species (of seaweed) and organic extractive
species of filter feeders (molluscs, clams) increasing concurrent aquaculture production (Chopin
et al., 2012). Extractive species contribute ecological function of biomitigation reducing carbon
dioxide (CO»), excess P, N and heavy metals waste load (Martinez-Espifieira et al., 2015) thus
contribute to goals of circularity and sustainable productions.
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TABLE 1: NUTRIENT COMPOSITION AND BENEFITS OF BIOFLOC MEAL TO
AQUACULTURE SPECIES.
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1.2.4 Aquaponics

Aquaponics combines recirculating aquafarming (RAS) with hydroponics for concurrent cropping
of fish and plant (Pattillo, 2017). In aquaponic system nutrient-enriched culture water containing
fish excrements is processed by bacterial biofiltration system to support soilless plant growth.
Aquaponics provide possibility of polyculture of fish increasing agro-diversity and fisheries output
(Martan, 2008). Danaher et al. (2007) in their work successfully maintained polyculture of
freshwater prawn (Macrobrachium rosembergii) with Nile tilapia (O. niloticus). Polyculture
enable valuable production with biological control of pathogenic organisms. Additionally,
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growing plant crop enables economic benefit to farmers for catering off-season food demands.
Estim et al. (2019) evaluated Nile tilapia aquaponic system with green beans (Phaseolus vulgar
is) and cabbage (Brassica rapa chinensis) for 70 days. Efficient water remediation potential of
RAS resulted in high fish survival (95 + 2.8%), improved feed conversion rate with enhanced plant
productivity. Dual-cropping, zero water discharge, and waste reutilization make aquaponics highly
sustainable aquaculture system. Ekawati et al. (2021) analyzed feasibility of catfish (Clarias
gariepinus) aquaponic system and RAS (A-RAS) in water quality and waste management. A-RAS
improved water quality indicators and fish produce (13% higher than conventional system),
providing water spinach as an additional economic crop to the farmers.

1.2.5 Microalgae based aquaculture waste management

Microalgae (MG) Nannochloropsis oculata, Pavlova gyrans, Phaeodactylum tricornutum are
utilized as biofilters for waste remnants; coupling waste recycling to biomass yields under
controlled environments in RAS, IMTA, BFT as circular stratagem realizing sustainable
aquaculture growth (Khanjani et al., 2022a). Recently, combination of mussel-MG-bacterial
system is proposed as sustainable and efficient model of aquaculture WW remediation. Mussel
(Hyriopsis cumingii), probiotic strains of Bacillus subtilis, B. licheniformis, and MG Chlorella
vulgaris were at optimal dose 4 mussels per cubic metre, 0.5 mL, 1 mL, and 2 mL respectively
(Geng et al., 2022).

Nutrient-rich aquaculture wastewaters have been utilized for phycoremediation and manufacture
of value-added products through cultivation of MG (Leong et al., 2021). MG’s are biological
refineries capable of WW reclamation, biomaterials for bioplastics, generation of bioenergy from
biofuels such as bioethanol and biodiesel (Okeke et al., 2022).

1.3 Valorization of aqua waste and value-added production

Aquaculture waste valorization is the conversion of culture waste into valuable resources. Marine
algae comprising MG and seaweed ‘macroalgae’ are important biorefineries contributing to
circular aquaculture and bio-based economy (Sarma et al., 2021). Phototrophic potential of algae
help sequester carbon dioxide for primary production in algal biomass lowering greenhouse gas
emissions, improving aquaculture carbon footprint alongside yielding proteins, lipids,
carbohydrates, pigments, valuable bioactive compounds (Levasseur et al., 2020).

Value added bioactive compounds including polyphenols, antibodies, enzymes, hormones and
vitamins are obtained from aquaculture species of green (Chlorophyta), red (Rhodophyta) and
blue-green alga (Cyanobacteria). Along with seaweeds, MG and cyanobacteria are valuable source
of feedstock for sustainable production of aqua feeds, biofuel (bioethanol, biodiesel), bioplastics,
and bioenergy (syngas, biomethane, biohydrogen) contributing to bioeconomy-based value-added
production (Sarma et al., 2021; Eladl et al., 2024). Besides their role in WW treatment of culture
sludge and effluents, algae assure removal of heavy metals, excessive N, P, potassium (K) loads
with utilization as biofertilizers for daphnid, algal cultivation and integrated to aquaponic, biofloc
system (Ammar et al., 2021).
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CONCLUSIONS

Biosecurity of aquatic systems, food safety and nutrition chiefly governs growth and enhancement
of aquaculture to sustainably cater world food and resource needs. Aquaculture is a fast expanding
food production system with potential for improving fisheries yields using RAS, IMTA, and BFT,
algal cultivation, aquaponics as closed loop technologies through generated waste-reuse, WW
remediation, and recycling. Careful management of generated effluents and valorization of
aquaculture waste provides large-scale opportunity for value-added production of bioactive
compounds, feedstock, biofertilizers and biofuels. Essentially, repurposing of waste by products
and resource recovery helps in clean water regeneration and reutilization for primary production,
toxic chemical removal, supplementing sustainable development goals and objectives of
biocircular blue-economy.
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