
ISSN: 2249-7137 Vol. 11, Issue 10, October 2021 Impact Factor: SJIF 2021 = 7.492

ACADEMICIA: An International Multidisciplinary Research Journal
https://saarj.com

 944

ACADEMICIA

ACADEMICIA
A n I n t e r n a t i o n a l

M u l t i d i s c i p l i n a r y

R e s e a r c h J o u r n a l

(Double Blind Refereed & Peer Reviewed Journal)

 DOI: 10.5958/2249-7137.2021.02191.1

MATHEMATICS: INTEGRAL PART IN COMPUTER SCIENCE FIELD

Dr Vipin Kumar Solanki*

*SOEIT, Sanskriti University,

Mathura, Uttar Pradesh, INDIA

Email id: hodmaths@sanskriti.edu.in

ABSTRACT

Despite the many connections across disciplines, there is evidence that computer science

practices need little or no mathematical knowledge. This disconnect between the practical and

intellectual roles of mathematics in computer science results in an awkward position for

mathematics in computer science curricula, which necessitates math courses that are poorly

aligned with computer science needs and students who use a lot of math but very little computer

science. As a result, computer science graduates are hesitant and unable to utilize mathematics

on the job. Fortunately, modest local changes may have an instant impact on the problem's

major players. Although everyday practice needs little, if any, mathematics, computer sciences,

software engineering, and mathematics are nevertheless linked, according to this article. Our

primary concern is the education of computer professionals, the majority of whom are still

educated via a curriculum that calls itself "informatics." Rather of referring to a single subject,

the term "informatically science" is commonly used. Both software and computer science are

addressed in our rationale and results. This research will help engineering students concentrate

on the most essential topics in the curriculum.

KEYWORDS: Computer science, Discrete mathematics, Mathematics, Science, University.

1. INTRODUCTION

In general, science and engineering are intimately linked to mathematics. Natural science makes

mathematical models of the phenomena they investigate; natural sciences and social sciences

rely on statistics to tease raw data meaning; in all phases of systems design, building and

maintenance, engineers depend on mathematical models. Computer science and software

engineering seems to be a few of exceptions to this norm. The usage of mathematics is low in

practising software developers[1]. Yet it would be surprising if relationships were as loose as it

ISSN: 2249-7137 Vol. 11, Issue 10, October 2021 Impact Factor: SJIF 2021 = 7.492

ACADEMICIA: An International Multidisciplinary Research Journal
https://saarj.com

 945

ACADEMICIA

looks between computer science, software engineering and mathematics. In the worst possible

case, it would be rather harmful for disciplines to reject techniques that characterise areas with

the titles they use. The only non-maths of the S&E family would be computer science and

software Engineering[2].

In their working life, computer scientists utilise math in many ways. Firstly, mathematics offers

the theoretical foundation for many computer sciences subfields, and for others key analytical

tools; computer scientists therefore apply specific mathematical themes to specific computer

issues[3].More generally, mathematics gives a framework to discuss computers and computing

issues and provides a mental discipline to solve these problems more widely.In view of the

condition of each participant, the student's identities as computer scientists were linked to their

mathematical viewpoints. This study concentrated on a few student histories. This study also

showed that students' perceptions of maths and their study programmes, each affecting the other,

are interwoven.

Understanding how mathematics training may affect the views and identity of a student, in

particular at an early age in CS, is vitally linked with an important problem present in the field of

computer education: diversity. Outline of the current ACM computer science bachelor's

programme instruction is broadly based on its mathematical needs, and many CS programmes

are deliberately constructed early in the course of the study with a mathematical component. The

link between these two disciplines must be understood in order to grasp the significance of

mathematics for students who study computer science (CS) and software engineering (SE).This

essentially minimises the difference between science and engineering[4]. The distinction

between chemical engineering and chemistry or between physics and electrical or engineering is

understood by many. One is science, which primarily advances disciplinary knowledge, and the

other, which consists largely of applying this information to the achievement of humanity's

technical requirements.

In their first mathematical course, the students are generally exposed to the principle of

mathematical induction. Recursion and iteration are key philosophical and informatics principles

for implementation. However, the connections between mathematical induction, recursion and

iteration are not well understood by many graduates. Most basic CS textbooks and data

structures / algorithms literature give a minimum of induction math since the classes are not

usually preconditioned by discrete mathematics[5]. Some curricula require mathematics as the

basis for the course on the data structures to establish these important connections.

In order to succeed, the teachers of these two courses must coordinate carefully and deliberately.

The mathematics faculty, who may not be well aware of the linkages and/or could feel that

discrete mathematics is a difficult subject, which requires many preconditioned classes, usually

teaches CS/SE students’ Mathematics courses. This creates an even larger gulf for CS/SE

students who are already a little mathematical phobic. The Mathematical Association of America

(MAA) acknowledged these problems and dealt with them in its 2004 guidelines for curricula[6].

The qualities of a graduate in computer science could hardly, as taught today, be distinguished

from those of a graduate in software. The latter might have some additional software engineering

courses; both are, however, mostly trained in programming entry-level roles. It is not really

science or engineering, actually.

ISSN: 2249-7137 Vol. 11, Issue 10, October 2021 Impact Factor: SJIF 2021 = 7.492

ACADEMICIA: An International Multidisciplinary Research Journal
https://saarj.com

 946

ACADEMICIA

ABET, an accrediting board for engineering and technology, has been established in the United

States to certify the undergraduate programmes in computer science and software engineering.

Below is the definition of engineering by the US Engineering and Technology Accreditation

Board[7]: The following: ―Engineering is a profession where math and natural science is used

with judicial judgement and learnt the materials and strengths of nature in the interest of a cost-

effective method‖.

Typical curriculum for education in computer science do not cover discrete mathematics and

software. University programmes generally need discrete math and software engineering courses,

but they are often given as an alternative if the place they merge—courses in the field commonly

termed formal methods. Standard discrete math courses offer minimum motivation and

application of materials.

The conventional courses in Software Engineering do only use a little if any discrete

mathematics, and the formal courses in computer science normally are optional and late.These

factors lead to pupils having a minimal education in current software theory and practise based

on mathematics. In addition, pupils are not given an opportunity to evaluate the usefulness and

value of this content and to ask, literally, why they should attend discreet maths classes. A rich

background is the discreet mathematical teaching.

This definition is not very well met by computer engineering. What is "natural science" or

"natural materials and forces?"it is believed that think computer science, a man-made discipline,

is the foundation of software engineering, that "materials" are mostly physical rather than

conceptual and that "natural forces" are truly "universe laws." The alternative definition could

therefore be as the profession of engineering in which knowledge of fundamental mathematics

and sciences, acquired through study, experience and practise, are applied to the development of

ways to use the materials, concepts and laws of the universe economically in the interest of the

human race.

Fundamental mathematics and science" appear to represent this connection and dependence

better and more generally. The following graphic containing basic mathematics as discrete

Mathematics, including Logic, may be shown for software engineering. The approach is being

developed largely by the Bachelor of Informatics as preparation for the graduate studies in

advanced knowledge and as a professional track in software systems design/development[8].

Graduates of both programmes, while this would not be their major professional route, should be

skilled programmers. Programmers are essentially technicians, and experts who are able to

achieve their objectives without a thorough grasp of the basic mathematics or physics behind

them.

In earlier parts of this article, the validity of a recursive or iterative pattern was argued in the

context of a mathematical induction. The linkages are seen to be essential to the motivation of

students may, and must be established in the first year. Mathematical induction is widely

acknowledged a challenging topic for pupils. This was examined by mathematical educational

scientists[9].

In the first discrete mathematics course, the classical technique to the teaching of mathematical

induction is to use multiple numerical examples and problems as a modular unit.For CS/SE

major induction, other courses generally touch on mathematical induction (e.g., algorithm

ISSN: 2249-7137 Vol. 11, Issue 10, October 2021 Impact Factor: SJIF 2021 = 7.492

ACADEMICIA: An International Multidisciplinary Research Journal
https://saarj.com

 947

ACADEMICIA

analysis, theory of computation, etc). This is considered insufficient for students to comprehend

and utilise induction and to establish the required relationships with CS.A person with

knowledge of HOW will always have a job, but the individual with knowledge of HOW will

always be his boss[5].

Training vs education! Training versus education! Most students try rather than to grasp the basis

for the information they have to obtain a career (HOW) as well as (WHY). This is the idea of

education "to fill a vessel, ―those which is also a component of the software-practitioner

knowledge survey. The driving factor behind many professions' curriculum growth is frequently

knowledge rather than understanding, mostly owing to the demand of companies, managers and

students. Knowledge-based courses are also more easily taught and evaluated by students.

1.1 Who Should Teach Mathematics?

This is a question more significant than the substance of the course. Most CS/SE departments

can do discrete work just as much as most physical departments can teach calculus. CS/SE

departments are professors. (This would not be pushed too far into analogies, as physicists

frequently know the topic of the calculus enough well to teach it, but few have a broad

mathematical perspective or background to accomplish this properly. On the other side, CS/SE

faculty members frequently have the necessary perspective and background, although this may

not be true much longer.)

Anyway, CS/SE professors have as many teaching courses directly inside the subject as their

colleagues in physics without strictly teaching extra mathematical courses. In general, physicists

are quite pleased to teach their prospective pupils’ mathematics, especially since, at least in the

past, they swung enough weight to ensure that calculus courses covered the necessary

materials[10]. Thus, CS/SE may almost dictate the curriculum for such courses, because they are

by far the major customer departments for those courses.

In addition, the mathematical departments are certainly hungry enough to be willing to teach the

courses at least in theory. For their design and operation, the modern systems depend heavily on

software. Specification, design and execution of reliable software with rigorous development

procedures must be simple for the next generation of developers. To assist prepare this

generation, we designed a teaching strategy and two-fold-focused materials: to increase the

knowledge and enjoyment of discrete mathematical structures (DM) that underlie software

engineering theory (SE).

However, it was true that a decade ago, very few mathematics faculty departments were

sufficiently aware of computer science and that they had to give them a decent mathematical

course for students who were going to participate in CS or SE programs. Does that continue to be

true? (It is usually accurate, with certain quality institutions of tiny liberal arts being possibly the

primary exceptions.)

In any events, CS/SE programmes should certainly strive for their mathematics courses in maths.

It is a long-term objective of the CS/SE programmes. If your Department of Mathematics is still

unable to provide you excellent enough work, it is certainly advantageous to urge your

Mathematics Department to employ discrete mathematicians to accomplish that.

ISSN: 2249-7137 Vol. 11, Issue 10, October 2021 Impact Factor: SJIF 2021 = 7.492

ACADEMICIA: An International Multidisciplinary Research Journal
https://saarj.com

 948

ACADEMICIA

1.2 Arguments Favouring Mathematics in CS/SE Curricula

Some practitioners are going to need some arithmetic. However, not a single specialised math

course in CS/SE curriculum can reasonably be justified by either the number of mathematicians

or the quantity of mathematics they will need. However, excellent reasons exist for incorporating

a CS/SE curriculum in some mathematics classes. Here is a couple here.

 Its impact on the mind is the important yet unproven reason for mathematics instruction at

any school level. In other words, study mathematics improves pupils' learning skills.

Mathematics is very crucial for students of CS/SE as the logical thought contained in all

mathematical ideas is so close to the logical idea necessary in all the construction of

software.

 Some, but not many of the CS/SE graduates will pursue professions where math is required.

This number can rise as and when developers of software are usually more formal than they

are today so that they begin to be utilised more extensively, for example in The Science of

Programming.

 A few CS/SE graduates will attend a graduate school in CS, although very few. Some of

them, maybe far more mathematically based on what they learn than anything else in CS/SE

undergraduate curricula.

1.3 Mathematics and Reasoning

Many computer tasks need practitioners to rationally and thoroughly analyse issues and their

solutions – frequently using mathematical tools and methodologies. For instance,

 Whenever issues or solutions are offered, users should question what assumptions and how

they might affect whatever results they have gotten or programme behaviour.

 When a problem solution is suggested to an algorithm, developers and researchers must

assess if the method is proper and efficient in using resources.

 When software is proposed as algorithm implementation, testing organisations and users can

verify that the software complies with the requirements stated both formally and

experimentally. (The formal verification necessary exists in instances.

 The requirement to be fair in mathematical terms has been established by electronic

gambling devices in some jurisdictions[1]. A position announcement by an amateur gaming

firm was recently received from one author seeking "to create, test and analyse new games,"

and "to compose mathematical evidence for game submissions to regulators".)

 If multiple possible solutions to a problem are presented, practitioners should under different

assumptions can assess the relative advantages and drawbacks of these options.

In this issue, many of the following topics are included in my article entitled "Mathematical

Reasoning in Software Engineering Education." They are presented with further reasons for their

completeness. They are thorough, yet they understand that there are many viewpoints on these

problems.

ISSN: 2249-7137 Vol. 11, Issue 10, October 2021 Impact Factor: SJIF 2021 = 7.492

ACADEMICIA: An International Multidisciplinary Research Journal
https://saarj.com

 949

ACADEMICIA

 Abstract software.

 Mathematics and Software Engineering are commonly associated with notations, symbols,

abstractions and accuracy.

 For modelling and software system behaviour, mathematics is crucial.

 Mathematically based are many fields of application (engineering, science, economics, etc).

 For most issue solving, mathematical reasoning is crucial, notably the construction of

software systems.

1.3.1 Software is abstract:

The fundamental form of mathematics was one of the earliest abstractions our ancestors devised.

Since the beginning, mathematics is now the fundamental instrument for humans. For non-

physical objects, such as software, abstract reasoning requires no greater tool than mathematics.

A software system may thus be seen as a model for a desired process or calculation that is

mathematically accurate. Software experts largely agree on the abstract nature of software, but

appear to prefer to use alternate, non-mathematical methods to describe, design, build, test,

debug and manage software systems. This will progressively change, as systems get bigger and

more complicated, mathematical instruments (e.g. modelling and model checks) become

accessible, and graduates are more mathematically knowledgeable and more aware of the

mathematical potential as a reasoning tool.

1.3.2 Notes, symbols, abstracts, precise

All four of them rely largely on the software. For ordinary objects and concepts, notations and

symbols are abstractions. This is why y = axe + b is known from algebra and the programming

count = 0. In their context of use, both are widely understood and accurate. Students are

encouraged to master programming language notations, symbols, accurate syntax and semantics.

Actually, this is none other than mathematics, which is generally easier to understand. Students,

however, regard mathematics as static and rotary. Programming is seen as dynamic and exciting,

attractive to our operating brains.Other computer languages and tools deliver comparable

delights when instructors find and embrace them. These include standard ML, Miranda and

Haskel languages, language design and testing, and languages like Maple, Mathematica or

Axiom programming mathematics. Their usage is wide and is suitable for pupils who acquire a

declarative thinking style. They employ notes, symbols, abstractions and accuracy.

1.3.3 Software modelling systems:

Before any item begins to be built, a model, even a conceptual one, must be developed. Today

software development is more of an art in which the initial concept takes shape slowly – like

melting a piece of clay. However, for projects in which more accurate understanding of the

desired item is necessary before building, such adhoc techniques are not acceptable. The first

solution is to construct, analyse and test a "mathematical" model. New tools, languages and

approaches for modelling software are changing whose use will once become the standard.

Languages are now available for system specification.

ISSN: 2249-7137 Vol. 11, Issue 10, October 2021 Impact Factor: SJIF 2021 = 7.492

ACADEMICIA: An International Multidisciplinary Research Journal
https://saarj.com

 950

ACADEMICIA

1.3.4 Domains of application:

Mathematics is a rich global, inclusive language for communication across different

communities. Accordingly, the programme offers software practitioners a tool for efficient

communication of mathematical underpinnings to customers and associates of all disciplines

(ingenriers, scientists, mathematicians, statistics, actuarials, and economics).

2. DISCUSSION

The understanding of details (i.e. jargon, true tables, formal rules of logic) and understandings

(i.e. paraphrasing formal rules), and rudimentary applications usually start at the beginning of

Bloom's taxonomical processes inside a learning environment. Computer science is no exception,

whether or not in its mathematical elements. This is the basis for thinking about Algorithms,

programmes, systems etc. This basic work is necessary. This basic level of reasoning and

comprehension, however, is insufficient to actually make practical use of computer science.

Students need to understand more than the routine mechanics. Such learning occurs when

subsequent courses are based on introductory courses and practise in both organised and open

settings at a more profound level of analysis. Although this analytical analysis may not be

included in every topic discussion in higher levels, students must regularly and in many different

circumstances encounter it. If undergraduate programmes do not work with the mathematics that

they demand, they restrict the capacity of graduates to apply mathematics in later studies or jobs.

There are (and have been) a number of methods to bridging the gap between the role of

mathematics in informatics and the way it is taught in computer science undergraduate

education. However, none of these indications shows a clear promise of success.

Mathematical requirements are applied more efficiently. Although most informatics curricula

provide room for different mathematics courses, few actually teach mathematics, which is

critical to the field. However, correcting this inefficiency is difficult. Under explicit or implicit

pressure, prerequisite structures in mathematics departments may require computer science

students to take basic, but not directly applicable, programs in engineering schools and computer

programs to include maths that are traditional to physical sciences, even if they are not critical to

computer science.

Mathematics may be included in computer science courses, and vice versa. The primary issue,

which has been addressed in a number of ways, is the underuse of mathematics in the computer

science curriculum. Henderson taught a first course for IT majors in the 1980s and 1990s that

focused on the foundations of informatics research in terms of mathematical reasoning and

problem solving. In the early 1990s, further efforts to integrate discrete concepts with

mathematical disciplines, such as Foundations of Computer Science, were part of the curriculum.

In the late 1990s and early 2000s, Baldwin and Scragg developed a course that introduced many

of the discrete mathematical skills required by computer scientists in elementary algorithm

design and analysis; today, curricula of software engineering that emphasize mathematical

technologies to produce accurate programs are used. However, none has gained momentum

beyond its creators. They have been seen as interesting, and perhaps even commendable, by the

computer science community, but not as paradigm-shifting innovations that must be adopted.

ISSN: 2249-7137 Vol. 11, Issue 10, October 2021 Impact Factor: SJIF 2021 = 7.492

ACADEMICIA: An International Multidisciplinary Research Journal
https://saarj.com

 951

ACADEMICIA

3. CONCLUSION

The computer science is frequently used to simulate the phenomena it examines, like

conventional areas of engineering. In addition, computational and mathematical thinking are

intimately linked. Paradoxically, though, many graduates of computer science and software

engineering perform effectively as professionals without mathematics explicitly being applied to

their job. This contradiction leads mathematics to be discomfort able in IT courses: while the

majority of these programmes include suitable mathematics, they frequently include a lot of non-

computer-based mathematics, yet they often ignore other applications when teaching certain

mathematical applications. This odd approach of computer science mathematics has surprisingly

long remained resistant to revision. Although the exact causes varies each school, we feel that

the overall explanation is because the faculty of computing just does not consider the issue as a

matter of urgency. In addition, in fact the problem appears to be small, as long as graduates of

computer science find work or employment in graduate schools in the subject and the area itself

grows. However, there is cause for alarm from a longer perspective. Slowly mathematical

instruments and procedures are adopted by software development and testing and today's

graduates must be adapted over their careers to such tools and processes. As graduates go

through their professions, they become responsible for system design, assessment of test findings

or quality metrics, architectural choices or algorithms and similar actions requiring quantitative

examination of data and comparison of possibilities.

REFERENCES

1. T. C. Lethbridge, ―Priorities for the education and training of software engineers,‖ J. Syst.

Softw., 2000, doi: 10.1016/S0164-1212(00)00009-1.

2. S. Surakka, ―What subjects and skills are important for software developers?,‖ Commun.

ACM, 2007, doi: 10.1145/1188913.1188920.

3. J. A. Laub, ―Assessing the servant organization; Development of the Organizational

Leadership Assessment (OLA) model. Dissertation Abstracts International,‖ Procedia - Soc.

Behav. Sci., 1999.

4. D. L. Parnas, ―Software engineering programmes are not computer science programmes,‖

Ann. Softw. Eng., 1998, doi: 10.1023/a:1018949113292.

5. A. B. Tucker, C. F. Kelemen, and K. B. Bruce, ―Our curriculum has become math-phobic!,‖

in SIGCSE Bulletin (Association for Computing Machinery, Special Interest Group on

Computer Science Education), 2001, doi: 10.1145/366413.364593.

6. W. Barker and S. L. Ganter, ―Fundamental mathematics: Voices of the partner disciplines,‖

in A Fresh Start for Collegiate Mathematics: Rethinking the Courses Below Calculus, 2006.

7. D. Thandapani, K. Gopalakrishnan, S. R. Devadasan, and R. Murugesh, ―Implementation of

European Quality Award in Engineering Educational Institutions via Accreditation Board for

Engineering and Technology,‖ Int. J. Bus. Excell., 2013, doi: 10.1504/IJBEX.2013.050576.

8. ―Session details: Why universities require computer science students to take math,‖

Commun. ACM, 2003, doi: 10.1145/3262533.

ISSN: 2249-7137 Vol. 11, Issue 10, October 2021 Impact Factor: SJIF 2021 = 7.492

ACADEMICIA: An International Multidisciplinary Research Journal
https://saarj.com

 952

ACADEMICIA

9. L. Cassel, A. Clements, and G. Davies, ―Computer Science Curriculum 2008: An Interim

Revision of CS 2001,‖ 2008.

10. A. O. Bilska et al., ―A collection of tools for making automata theory and formal languages

come alive,‖ SIGCSE Bull. (Association Comput. Mach. Spec. Interes. Gr. Comput. Sci.

Educ., 1997, doi: 10.1145/268085.268089.

